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Abstract
The consideration of dark energy’s quanta, required also by thermodynamics,
introduces its chemical potential into the cosmological equations. Isolating its
main contribution, we obtain solutions with dark energy decaying to matter
or radiation. When dominant, their energy densities tend asymptotically to a
constant ratio, explaining today’s dark-energy–dark-matter coincidence, and in
agreement with supernova redshift data.

PACS numbers: 98.80.−k, 98.80.Es, 98.80.Bp

1. Introduction

Dark energy is a component of the universe whose negative pressure, characteristic of
the quantum vacuum, accelerates its expansion. Evidence for its existence has recently
accumulated from independent sources such as the supernova redshift far-distance relation
[1, 2], structure formation [3], the microwave background radiation [4] and lensing [5].

The cosmological constant �, dark energy’s original conception, was added by Einstein in
the application of general relativity to cosmology in 1917 in order to describe a static universe
[6], building on a 1890s proposal by Neumann and Seeliger, who introduced it in a Newtonian
framework for the same reasons. Its contribution in the Einstein equations

Rµν − 1
2gµνR − �gµν = 8πTµν (1)

equilibrates gravity’s attraction in a matter universe; here Rµν is the Ricci tensor, gµν is the
metric tensor, which describe the geometry, and Tµν is the energy-momentum tensor; we use
units with the Newton, Planck, Boltzmann and light-speed constants G = h̄ = kB = c = 1,

except when given explicitly, as needed.
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Zeld’ovich sought to connect it to the quantum vacuum [7]. This requires its
reinterpretation as a Tµν component in equation (1). The vacuum energy density of particle
fields with mass m � MP = 1√

G
is obtained by summing over its modes k:

ρ�P = 1

(2π)3

∫ MP

d3k
√

k2 + m2 � 3 × 10114 GeV cm−3; (2)

the natural cutoff is the Planck-mass scale MP , the only possible mass conformed of G, h̄, and c,
while in today’s universe ρ�0 � 4 × 10−6 GeV cm−3. ρ�0 represents ��0 = ρ�0/ρc0 � 0.73
of its critical energy density ρc0 today [8], and in a flat universe [9]

∑
�i = 1. The rest

corresponds mainly to matter, dark and baryonic, the latter conforming �b0 � 0.044 only [8].
Dark energy’s origin, its smallness by 122 orders of magnitude with respect to the vacuum’s
natural Planck scale, and the coincidence of its present energy-density scale with that of the
universe remain puzzling; dynamic behaviour points to a possible explanation.

The energy components are generally perfect fluids, described by their energy tensor
T µ(i)

ν = (ρi, pi, pi, pi) (at rest), with Tµν = ∑
i T

(i)
µν . Radiation and matter are characterized

by an equation of state

pi = wiρi, (3)

where wr = 1/3 for radiation (and for relativistic Fermi or Bose gases,) and wm = 0 for non-
relativistic matter. Under the isotropic Robertson–Walker metric ds2 = dt2 − R2(t)(dx2 +
dy2 + dz2), equation (1) implies the Friedmann equation

H 2 = 8π

3
ρc = 8π

3
(ρ� + ρr + ρm), (4)

where x, y, z are co-moving Cartesian coordinates, R is the scale factor, depending on time t,
as do ρi , and H = Ṙ/R, the Hubble parameter (a dot denotes time derivative.)

The energy-conservation equation within an expanding volume V ∼ R3,∑
i

d(ρiV ) = −
∑

i

pi dV (5)

is implied by the contraction of equation (1). When decoupled, each contribution also satisfies

d(ρiV ) = −pi dV. (6)

Equation (6) can also be interpreted as a particular case of the first law of thermodynamics:

d(ρV ) = −p dV + µ dN + T dS, (7)

with additional contributions from the entropy S, and the particle number N, where T is the
temperature and µ is the chemical potential. When non-interactive radiation has µ = 0,
baryonic matter is conserved, dN = 0, and for both dS = 0. These conditions may not be true
for dark energy or dark matter. In this paper, we show that the consideration of dark energy’s
quanta modifies the cosmological equations through the µ dN term in equation (7), with the
implication that dark energy decays to another component. Thus, the derived asymptotic
energy-density constant ratio of the dominant components reproduces the coincidence of dark
energy and dark matter today. The entropy term T dS in equation (7) will be neglected, as dark
energy is associated with low-energy states. We first classify the chemical potential associated
with the pressure in equation (3) (section 2.) Relating it to a decay width, we consider its main
contribution to the cosmological equations, which are exactly solved for two components,
and then we apply the model to the supernova data (section 3.) We finally draw conclusions
(section 4.)
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2. Dark energy’s equation of state

The form of equation (2) implies that � generates a pressure p� = −ρ�, so w� = −1
for the vacuum energy. The parametric extension to arbitrary negative values w�, following
equation (3), with similar properties [10, 11], suits the lack of precise knowledge about it.
Whatever is its nature, and with a name not bound to its constancy, dark energy should contain
quanta [7], as any other form of energy in the universe, and so, the energy dependence on its
number N should be accounted for. Within the relation

E = cV −w, (8)

consistent with equation (3), c being a constant, if the energy dependence remains extensive,
another such quantity is required. Using N for such a variable,

E = c′N
(

V

N

)−w

(9)

introduces an N-dependence, with c′ being an (intensive) constant, except in the w = −1 case,
in agreement with the view that no quanta are associated with the vacuum.

Equation (9), also consistent with equation (3), implies the contribution

nµ = (1 + w)ρ, (10)

where n = N/V is the particle density.
We concentrate on dark energy satisfying equation (3). Using the thermodynamic relation

s = 1

T
(ρ + p − nµ), (11)

with s = S/V the entropy density, we identify two limiting cases: (1) in the zero-entropy
regime (s = 0),

ρ�w = cwn1+w, (12)

with cw being a constant, and nµ�w = (1 + w)ρ, as for equation (10); (2) the radiation-like
assumption, µrw = 0, leads to

srw = crwρ
1

1+w (13)

(crw a constant.)
Case (1) with equation (10), induced from equation (3), or case (2) with µrw = 0

represent special conditions; similarly to equation (3), the most general linear ρ-dependence
for the chemical potential requires the new parameter χ in

nµwχ = (1 + w + χ)ρ. (14)

Equations (3), (11) and (14) then generally lead to swχ = n
(

ρ

cwn1+w

)− 1
χ . From the resulting

temperature Twχ = −χρ

n

(
ρ

cwn1+w

) 1
χ , it follows that χ �= 0 signals a non-zero Twχ . In fact, swχ

contains the s = 0 limit, as equation (12) is approached with ρ ∼ ρ�w for χ → 0, and for the
µrw = 0 case in equation (13), swχ = srw for χ = −w − 1, and crw = c

1/χ
w . The knowledge

of w�, and these limits suggest χ is also O(1).
The modification of equation (6) by the chemical-potential contribution is analysed

next.
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3. Cosmological equations with dark energy’s chemical potential

The chemical potential can be written as

µ� dN = µ�(n� dV + V dn�); (15)

changes in particle numbers through decay are associated with partial widths �, and, ultimately,
with interactions. In the universe’s evolution in dt , we distinguish the two contributions: (1)
N�1 dt = n�µ� dV = (1 + w� + χ)ρ� dV is associated with decay due to its expansion

n��1 = 3(1 + w� + χ)Hρ� ∼ ρ
3/2
� , (16)

given H ∼ ρ
1/2
� ; (2) N�2 dt = µ�V dn� contains terms that are not of this form; it could

account for any other out-of-equilibrium conceivable decay process linked to interactions.
For the gravitational interaction, and Twχ = 0, �2 ∼ σn�v ∼ (

1
/
M4

P

)
n�ρ

1/2
� , where

for the cross section σ ∼ (
1
/
M4

P

)
ρ

1/2
� , given a tree-level gravitational interaction, and

the dimensionally fit power of the only relevant variable ρ�; the velocity v ∼ c = 1,

so n��2 ∼ ρ
2

w�+1 +1/2

� , using ρ�w in equation (12). Comparing with n��1 ∼ ρ
3/2
� , from

equation (16), for −1 < w� < 1, �2 � �1 as ρ� → 0. Similarly, this will always occur
for low Twχ �= 0, implying still ρ� ∼ ρ�w, but high enough for the thermic contribution
to be dominant so [12] σ ∼ (

1
/
M4

P

)
T 2

wχ . Another type of interaction can be dominant for
some time, but it will eventually be overridden by the �1 term. Lower powers of ρ�, e. g.,
a constant decay rate n��2 ∼ ρ�, could make a significant cosmological contribution, but it
would have to be fine tuned to give the present parameters [13]. Thus, the �2 term can and
will be neglected.

Under such circumstances, we use changes of the form ∂N�/∂V = n� in equation (15).
We obtain, using equations (7), (16),

ρ̇� + 3(w� + 1)Hρ� = 3[(w� + 1) + χ ]Hρ�. (17)

Energy conservation in equation (5) demands that energy be transferred, which we assume
occurs for only another dominant i component in equation (4),

ρ̇i + 3(wi + 1)Hρi = −3[(w� + 1) + χ ]Hρ�. (18)

The set of equations (4), (17), (18) describes a two-fluid system with ρ� decaying out of
equilibrium as is common in many universe processes [12]. No energy transfer is produced
for w� + 1 + χ = 0, that is, for the radiation-like case with nµwχ = 0 in equation (14). We
also find (see equation (17)) dark-energy decay for χ < 0. A decaying cosmological constant
was first conceived by Bronstein [14] to explain the universe’s time direction, and recent study
starts with [15], with various phenomenological decay laws then considered [16]; quintessence
models with a similar energy interchange have also been studied [17]. By substituting H in
equation (4) into equation (17), we obtain

ρi = −ρ� +
ρ̇2

�

24πχ2ρ2
�

. (19)

Substituting this into equation (18), we get

6χρ�ρ̈� + (di − 6χ) ρ̇2
� − 24π [di − 3 (1 + w�)]χ2ρ�

3 = 0, (20)

where di = 3(wi + 1). t as an inverse function of ρ� can be integrated, where initially ρ�i

at ti ,

t − ti =
∫ ρ�i

ρ�

dρ

(
di + 3χ

24χ2π [di − 3(w� + 1)]ρ3 + 3(di + 3χ)χCρ
2− di

3χ

) 1
2

. (21)
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Figure 1. Comparison of magnitude µ = 5Log10(dL/Mpc) + 25 of luminosity distance dL,
as a function of redshift z, for flat models. For non-asymptotic models with w� = −1, and
(a) �m0 = 0, ��0 = 1 (dotted), (b) �m0 = 0.27,��0 = 0.73 (line), and (c) �m0 = 1,��0 = 0
(dashed); and (d) for asymptotic model with �b0 = 0.044, and χ0 = −0.48 (dot-dashed). The
reduced Hubble parameter h = 0.71 was used for all cases.

C accounts for initial conditions for ρi , and we have chosen the solution for which R increases
and ρ� decreases. For some χ,w�, t (ρ�) can be given explicitly in terms of hypergeometric
and elliptic functions. Using equations (19), (21) one finds

ρc ≈ 24χ2π [di − 3(w� + 1)]ρ� + (di + 3χ)3χCρ�
− di

3χ

24πχ2(di + 3χ)
. (22)

One derives that for −di/3 < χ < 0

limρ�→0
ρ�

ρc

= di + 3χ

di − 3(w� + 1)
(23)

within the wide set of initial conditions C � ρ
1+ di

3χ

�0 , so �i and �� will acquire a fixed
asymptotic value.

Such an asymptotic behaviour fits the supernova data [18] interpreted under
equation (23), with dark matter and dark energy evolving with a constant ratio. Considering
baryonic matter, dark matter and dark energy (the latter two evolving as R3χ0 ), assuming
asymptotic behaviour sets in as early as z = 2, with the constant χ0 = −0.48, and as shown
in figure 1 (and compared with the fitting non-asymptotic model, and non-fitting ��0 = 0,
and the cosmological constant ��0 = 1 cases), one can reproduce the luminosity distance
dL = H−1

0 (1 + z)
∫ z

0 dz′[�b0(1 + z′)3 + (1 − �b0)(1 + z′)−3χ0 ]−1/2 up to the measured redshift
z ∼ 2. We note that the fit is independent of ��0, as derives from the asymptotic regime.
The choice of initial conditions (C in equation (21)) sets the timing of the matter-dominated
regime (wi = wm = 0 in equation (18)) before the asymptotic one, to match the conventional
cosmology.

4. Conclusions

In summary, the account of dark energy’s quanta allows for a dark-energy decaying model
able to explain its coincidence with dark matter today, within classical general relativity
and thermodynamics. It represents a departure from the zero-temperature cosmological
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constant, while it maintains the results of the standard cosmology. This supports a conservative
approach in which known physical elements can provide new information [19]. Dark energy’s
coincidence with the critical density today is connected to the universe evolution, in which
events occur by contingency, rather than chance. While microphysics [20] needs to elucidate
the dark energy’s equation of state, the universe already emerges as flat, interconnected,
evolving deterministically, and in an inexorable process of accelerated expansion and decay.

Acknowledgments

The author thanks A de la Macorra and M Giovannini for discussions, and acknowledges
support from DGAPA-UNAM and HELEN.

References

[1] Perlmutter S et al 1998 Nature 391 51
[2] Garnavich P M et al 1998 Astrophys. J. 509 74
[3] Efstathiou G, Sutherland W J and Maddox S J 1990 Nature 348 705
[4] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[5] Soucail G, Kneib J P and Golse G 2004 Astron. Astrophys. 417 L33
[6] Einstein A 1917 Sitzungsberichte der königliche Preussiche Akademie der Wissenschaften zu Berlin p 142
[7] Zel’dovich Ya B 1967 JETP Lett. 6 316

Zel’dovich Ya B 1967 Pis’ma Zh. Eksp. Teor. Fiz. 6 883
[8] Eidelman S et al 2004 Phys. Lett. B 592
[9] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559

[10] Steinhardt P J 1997 Critical Dialogues in Cosmology ed N Turok (Singapore: World Scientific)
[11] Turner M S and White M 1997 Phys. Rev. D 56 R4439
[12] Kolb E W and Turner M S 1994 The Early Universe (Reading, MA: Adison-Wesley)
[13] Besprosvany J 2005 Cosmology from decaying dark energy, primordial at the Planck scale Preprint

astro-ph/0502439
[14] Bronstein M 1933 Phys. Z. Sowjetunion 3 73
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